

AI-Driven Smart Grid Optimization for Real-Time Renewable Energy Utilization in Healthcare Facilities

CharuThakur, N. Saranya
DEV BHoomi MEDICAL COLLEGE OF PARAMEDICAL SCIENCES, KARPAGAM COLLEGE OF ENGINEERING

AI-Driven Smart Grid Optimization for Real-Time Renewable Energy Utilization in Healthcare Facilities

¹CharuThakur, Professor (Dean), Dev Bhoomi Medical College of Paramedical Sciences, Dev bhoomi Uttrakhand University Dehradun, Uttrakhand India mbdcharuthakur@gmail.com

²N. Saranya, Assistant Professor, Department of Artificial Intelligence and Data Science, Karpagam College of Engineering, Coimbatore, Tamil Nadu, India. saranyababumecse@gmail.com

Abstract

The integration of artificial intelligence in energy systems has revolutionized real-time resource optimization, especially in critical infrastructures such as healthcare facilities. Hospitals, characterized by their high energy demands and sensitivity to power interruptions, require intelligent systems that can adapt dynamically to fluctuating loads and renewable energy availability. This chapter explores the application of Reinforcement Learning (RL), with a focus on deep and multi-agent frameworks, to optimize smart grid operations in healthcare environments. It presents scalable models for real-time scheduling, storage control, and energy curtailment reduction, all while maintaining strict reliability constraints for medical equipment and services. Key contributions include the use of Deep Q-Networks (DQN), Actor-Critic architectures, and Multi Agent RL systems to enable decentralized, robust, and adaptive energy management strategies. The chapter also examines the integration of IoT-based sensor networks for predictive load profiling and highlights the challenges of implementing RL under conditions of grid instability, data uncertainty, and system heterogeneity. By aligning RL algorithms with hospital operational priorities, the proposed strategies enhance energy resilience, sustainability, and economic efficiency. This work underscores the transformative potential of AI-driven control in transitioning healthcare infrastructure toward cleaner, more autonomous energy systems.

Keywords: Reinforcement Learning, Smart Grid, Healthcare Facilities, Energy Optimization, Deep Q-Networks, Multi-Agent Systems

Introduction

The transformation of healthcare infrastructure into resilient, energy-efficient systems has become increasingly urgent amid rising global energy demands, climate change concerns, and the growing dependence on advanced medical technologies [1]. Hospitals, clinics, and other healthcare facilities operate continuously and rely heavily on uninterrupted power to support critical functions [2]. Intensive care units, surgical theaters, emergency response systems, and refrigeration of temperature-sensitive pharmaceuticals [3]. These operational imperatives necessitate energy systems that not only deliver high reliability but also integrate renewable sources to minimize carbon emissions and long-term operational costs [4]. In this context, the

convergence of artificial intelligence (AI) and renewable energy technologies presents a strategic opportunity for modernizing healthcare energy management [5].

Among AI techniques, Reinforcement Learning (RL) offers a unique advantage by enabling systems to make autonomous, goal-oriented decisions in dynamic environments [6]. RL agents interact with energy systems, learning optimal actions to balance generation, storage, and consumption while adapting to real-time conditions [7]. Unlike rule-based approaches that require extensive pre-programming and fail to handle uncertainties effectively, RL frameworks continuously improve by evaluating [8]. The outcomes of their decisions, making them particularly well-suited for healthcare microgrids [9]. These environments are characterized by highly variable load profiles, fluctuating renewable energy input, and stringent uptime requirements, all of which demand real-time, data-driven responses [10].